University of Asia Pacific Department of Basic Sciences & Humanities Semester Final Examination, Fall-2012 Program: B.Sc. Engineering (Civil, 2nd year/1st semester)

Course Title: Mathematics III

Time: 3 hrs

Course Code: MTH 201 Full Marks: 150

N.B. There are two sections in the question paper namely "SECTION A" and "SECTION B" Van ha

N.B: There are two sections in the question paper namely "SECTION A" and "SECTION B". You have to answer from both sections according to the instruction mentioned in each section.			ou have
	1.	SECTION A There are FOUR questions in this section. Answer any THREE (a) Define linear transformation with example.	3
		(b) Test whether the transformation $T: \mathbb{R}^2 \to \mathbb{R}$ defined by (i) $T(x,y) = xy$ and (ii) $T(x,y) = 2x - 3y$ is linear or not.	12
		 (c) Let T: U → V be a linear transformation, then prove that (i) T(0) = 0 (ii) T(-x) = -T(x) (iii) T (x-y) = T(x) - T(y). 	10
	2.	 (a) Define kernel and image of a linear transformation T: U → V. Prove that (i) Kernel of T is a subspace of U and (ii) Image of T is a subspace of V. 	15
		(b) Find the kernel and image from the following linear transformation $T(x, y, z) = (3x - y, y - z, 3x - 2y + z)$.	10
	3.	(a) Define row rank and column rank of a matrix.	5
		(b) Find the row rank and column rank of the matrix $ \begin{pmatrix} -1 & 2 & 0 & 4 & 5 & -3 \\ 3 & -7 & 2 & 0 & 1 & 4 \\ 2 & -5 & 2 & 4 & 6 & 1 \\ 4 & -9 & 2 & -4 & -4 & 7 \end{pmatrix} $	20
	4.	(a) Define eigenvalues and eigenvectors of a matrix.	5
	,	(b) Find the eigenvalues and eigenvectors of a matrix $\begin{pmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 3 \end{pmatrix}$. (c) Is the matrix mention in (b) is diagonalizable?	15
		(c) Is the matrix mention in (b) is diagonalizable?	5

SECTION B

There are FOUR questions in this section. Answer any THREE

5. (a) State Cayley Hamilton theorem. 5 (b) Verify the Cayley Hamilton theorem for the matrix (c) Find the inverse of A using the Cayley Hamilton theorem. 5 6. (a)Define Statistics with examples. 5 (b) Explain the types of Statistics with examples. 10 (c) Give some examples which is not Statistics. 5 (d) Explain the frequency distribution with example. 5 7. (a) Define arithmetic mean, geometric mean and harmonic mean with examples. 5 (b) Calculate the arithmetic mean and harmonic mean from the following data Class: 10-20 20-30 30-40 40-50 0 - 1010 Frequency: 8 15 20 3 (c)Define variance and standard deviation. Find the variance and standard deviation from the following data 5 17 12 10 9 13 8 14 (a) Define random experiment, sample space, event and probability with examples. 5 (b) If P is probability, then prove that 10 (i) $P(A^C) = 1 - P(A)$ (ii) If $A \subset B$ then $P(A) \le P(B)$ (iii) $P(A \cup B) = P(A) + P(B) - P(A \cap B)$. (c) A class containing 6 girls and 10 boys. If 3 students are chosen at 10 random from the class to form a picnic committee, find the probability that (i) all are boys (ii)

exactly 2 are boys and (iii) at least one is a boy.