University of Asia Pacific
Department of Basic Sciences and Humanities
Semester Final Examination, Spring 2013
Program: B.Sc Engineering (Civil, 1st year/1st semester)

Course Title: Mathematics I
Time: 3 Hours
Course Code: MTH 101
Full Marks: 150

N.B.: Answer 6 questions taking any 3 questions from each group. Figures in the right margin indicate the marks of the respective questions.

GROUP-A

Q1. (a) State and prove Rolle’s theorem.
(b) Verify this theorem for the function \(f(x) = (x - 2)^2 + 2 \) on \((0, 4)\).

12.5

Q2. (a) State and prove Lagrange’s Mean value theorem (MVT).
(b) Verify this theorem for \(f(x) = x^3 - x - 4 \) on the interval \([-1, 2]\).

12.5

Q3. (a) Find the nth derivative of \(f(x) = \sin(\alpha x + b) \)
(b) State and prove Leibnitz’s theorem.
(c) If \(y = (\sin^{-1} x)^2 \) then show that
\[
(1 - x^2)y_{n+2} - (2n + 1)xy_{n+1} - n^2 y_n = 0.
\]

8
8
9

Q4. (a) Let \(f(x) = 1 - 4x - x^3 \). Find the intervals on which the function \(f(x) \) is increasing, decreasing, concave up and concave down.
(b) Find the local extrema of \(f(x) = x^4 - 8x^3 + 22x^2 - 24x + 5 \).

12.5
12.5

GROUP-B

Q5. (a) State Taylor’s theorem with remainder. Use Taylor’s theorem to expand \(f(x) = \cos x \) in powers of \(x \) with the remainder term.
(b) State and prove L’Hospital’s rule. Apply this rule to evaluate
\[
\lim_{x \to 0} \frac{\tan x - \sin x}{2x^3}.
\]

12.5
12.5

Turn Over
Q6. Integrate the following

(i) \(\int \frac{\sqrt{x}}{\sqrt{a^3 - x^3}} \, dx \)
(ii) \(\int \frac{dx}{(e^x + e^{-x})^2} \)
(iii) \(\int \frac{\sin x \cos x}{\cos^4 x + \sin^4 x} \, dx \)
(iv) \(\int \frac{dx}{2x^2 + x + 1} \)
(v) \(\int \cos^3 x \, dx \)

Q7. (a) State the fundamental theorem of calculus.

(b) Evaluate \(\int_{0}^{\frac{\pi}{2}} \frac{dx}{5 + 4 \cos x} \)
(ii) \(\int_{0}^{1} \frac{dx}{3 + x^2} \) .

Q8. (a) Find the area of the region enclosed by the curves \(y^2 = 8x \) and \(x^2 = 8y \).

(b) Find the area of the region bounded by \(x^2 = y, \ x = y - 6 \).

(c) Find the area of the region bounded by \(x = y^2, \ y = 2x - 2 \).
N.B.: Answer 6 questions taking any 3 questions from each group. Figures in the right margin indicate the marks of the respective questions.

GROUP-A

Q1. (a) State and prove Rolle’s theorem.
(b) Verify this theorem for the function \(f(x) = (x - 2)^2 + 2 \) on \((0, 4)\).

Q2. (a) State and prove Lagrange’s Mean value theorem (MVT).
(b) Verify this theorem for \(f(x) = x^3 - x - 4 \) on the interval \([-1, 2]\).

Q3. (a) Find the \(n \)th derivative of \(f(x) = \sin(ax + b) \)
(b) State and prove Leibnitz’s theorem.
(c) If \(y = (\sin^{-1} x)^2 \) then show that
\[(1 - x^2)y''_{n+2} - (2n + 1)xy'_{n+1} - n^2 y_n = 0. \]

Q4. (a) Let \(f(x) = 1 - 4x - x^2 \). Find the intervals on which the function \(f(x) \) is increasing, decreasing, concave up and concave down.
(b) Find the local extrema of \(f(x) = x^4 - 8x^3 + 22x^2 - 24x + 5 \).

GROUP-B

Q5. (a) State Taylor’s theorem with remainder. Use Taylor’s theorem to expand \(f(x) = \cos x \) in powers of \(x \) with the remainder term.
(b) State and prove L’Hospital’s rule. Apply this rule to evaluate
\[\lim_{x \to 0} \left(\frac{\tan x - \sin x}{2x^2} \right) \]

Turn Over
Q6. Integrate the following

(i) \[\int \frac{\sqrt{x}}{\sqrt{a^3 - x^3}} \, dx \] (ii) \[\int \frac{dx}{(e^x + e^{-x})^2} \] (iii) \[\int \frac{\sin x \cos x}{\cos^3 x + \sin^4 x} \, dx \]

(iv) \[\int \frac{dx}{2x^2 + x + 1} \] (v) \[\int \cos^7 x \, dx \]

Q7. (a) State the fundamental theorem of calculus.

(b) Evaluate \[\int_0^{\pi/2} \frac{dx}{5 + 4\cos x} \] (ii) \[\int_0^1 \frac{dx}{3 + x^2} \]

Q8. (a) Find the area of the region enclosed by the curves \(y^2 = 8x \) and \(x^2 = 8y \).

(b) Find the area of the region bounded by \(x^2 = y, \quad x = y - 6 \).

(c) Find the area of the region bounded by \(x = y^2, \quad y = 2x - 2 \).