University of Asia Pacific Department of Civil Engineering Midterm Examination Fall 2015 Program: B.Sc. Engineering (Civil) Section: A & B

Course Code: CE 313	Time: 60 Minutes
Course Title: Structural Engineering II	Full Marks: 3 x 20

ANSWER ALL QUESTIONS. The figures are not drawn to scale.

[1] What are the assumptions for the vertical load analysis? Draw the Shear Force & Bending Moment Diagram of the **beams** shown in Figure 1?

[2] Find the vertical force K_y shown in the figure below by employing the **Portal Method**. Find the unknown moment M_E of the beam DE indicated by a box at joint E in the figure below by using the **Cantilever Method**.

20

20

Ref: CE313/Fall2015/A & B

University of Asia Pacific Department of Civil Engineering Midterm Examination Fall 2015 Program: B.Sc. Engineering (Civil) Section: A & B

Course Code: CE 313	Time: 60 Minutes
Course Title: Structural Engineering II	Full Marks: 3 x 20

[3] Calculate the **horizontal deflection of the joint D** of the truss by using the Virtual Work Method. Consider the elastic modulus $E = 29 \times 10^3$ ksi, truss members area A = 2.5 in² except member AE which has the area of 4 in².

Figure 3

Ref: CE313/Fall2015/A & B

20

University of Asia Pacific Department of Civil Engineering Mid Term Examination Fall 2015 Program: B.Sc. Engineering (Civil)

Course Title: Design of Concrete Structures II	Course Code: CE 317 (B-section)
Time: 1 hr	Full Marks: 45

[Answer all the questions. Assume value for any missing data]

1. (a) Refer to the following slab system of a two-storied building (**Figure: 1**). For the slab (10) consider LL = 60 psf, Partition Wall = 30 psf, Floor Finish = 20 psf, $f_c = 3000$ psi, $f_y = 40,000$ psi.

Show the detailed calculations of the following steps using WSD method:

- (i) Minimum slab thickness
- (ii) Calculation for design moments
- (iii) Calculation for reinforcements for moments
- (iv) Calculation for temperature and shrinkage reinforcements.

(b) What is flat slab? Mention advantages and disadvantages of flat slab.

(5)

2. A building is to be designed as a flat plate structure. A plan of the building is shown in Figure: 2 and dimension of all columns is 12"X12" .Using WSD, check column C₁ of the slab (10) shown in Figure: 2 for punching shear and calculate shear reinforcements.

[Given, slab thickness = 6 inch, FF = 25 psf, RW = 20 psf, LL = 40 psf, $f_c' = 3$ ksi and $f_y = 40$ ksi, $f_{c,all} = 1.35$ ksi and $f_{s,all} = 18$ ksi]

3. (a) What are the differences between one-way slabs and two-way slabs? Discuss the significance of the (3+5=8) limitation laid by ACI for long span/short span should be less than 2 for two-way slab design.

(b) Using USD method design a spiral column for a DL= 550^{k} and LL= 250^{k} . [Given: $f_{c}' = 3$ (12) ksi and $f_{y} = 60$ ksi and $f_{s,all} = 20$ ksi and steel ratio is 2.5%].

List of Useful Formulae for CE 317

Two way Slab

*- $M_A = C_{A-} \times W_T \times A^2$, *- $M_B = C_{B-} \times W_T \times B^2$ *+ $M_A = C_{A(dl)} \times W_{DL} \times A^2 + C_{A(LL)} \times W_{LL} \times A^2$, *+ $M_B = C_{B(dl)} \times W_{DL} \times B^2 + C_{B(LL)} \times W_{LL} \times B^2$ *A_s= M/f_sjd

Column-Supported Slabs

Short Column

 $\begin{aligned} *P_n &= 0.85f_c 'A_c + f_y A_s = A_g \left[0.85f_c '+ \rho_s \left(f_y - 0.85f_c ' \right) \right] \\ *P_u &= \alpha \ \phi A_g \left[0.85f_c '+ \rho_s \left(f_y - 0.85f_c ' \right) \right] \\ *P_{all} &= \phi' \left(0.25f_c 'A_g + f_{sall} A_s \right) = \phi' A_g \left(0.25f_c '+ \rho_s f_{sall} \right) \\ *\rho_s &= 0.45(A_a / A_{core} - 1) \left(f_c '/f_y \right) \\ \end{aligned}$

University of Asia Pacific Department of Civil Engineering Mid Semester Examination Fall 2015 Program: B.Sc. Engineering (Civil)

Course No: CE 333Course Title: Environmental Engineering IIFull Marks: 60Time: 1.0 hour

There are **FOUR** questions. Answer any **THREE**. [Assume reasonable value of missing data (if any)]

1. (a) (b)	Define sewage, sewerage and sewer. Draw and discuss a water-wastewater cycle. Mention different types of wastewater.	[8] [12]
2. (a)	Write short notes on i) Strom water ii) Non-scouring velocity of wastewater in a sewer iii) Separate sewerage collection system iv) Average dry weather flow.	[0]
(b)	What is communal sanitation system? How it can differentiate with public sanitation systems? What are its main disadvantages?	[8] [12]
3. (a) (b)	What is a simple pit latrine? Describe with a neat sketch how you can prevent groundwater pollution from a simple pit latrine. Define sanitation development. Mentions the problems that affect the ability and willingness of a community to participate sanitation development project.	[8] [12]
4. (a)	Define septic tank. Design and sketch of a two compartment septic tank to serve a household of 12 persons who produce 120 lpcd of wastewater. The tank is to be desludged every 5 years.	[20]

Page 1 of 1

University of Asia pacific Department of Civil Engineering Midterm Examination Fall 2015 Program: B.Sc Engineering (Civil)

Course Title: Transportation Engineering 1 Full Marks: 20 Course Code: CE 351 Time: 1hour

6

4

7

3

6

3

1

There are Three questions. Answer two of them

- 1.
- a) The following spot speeds were observed for 7 vehicles traversing 5 km segment of a highway. Calculate the Time Mean Speed and the Space Mean Speed of the vehicles.

Vehicle	Speed (km/hr.)			
1	60			
2	65			
3	56			
4	52			
5	57			
6	66			
7	48			

- b) What are the benefits of on-street parking management?
- 2.

a) Design a two-phase signal of a cross-juncti0on for the data given below:

Amber 3 sec Red-amber 2 sec E-W N-S Inter green 8 7 2 3 Lost time Approaches West North South East 720 780 Flow, veh/hr 730 680 Saturation flow veh/hr 2360 2065 2260 2520

Draw the phase diagram.

b) What are the general requirements of traffic control device?

3. a) Write short note on any four:

- (i) Origin-destination (O-D) survey
- (ii) Non-recurrent delay
- (iii) Contra flow
- (iv) Variable Message Sign (VMS)
- (v) Park and ride System

b) What are the factors that affect the road users' behavior?

c) Name the elements of road traffic system.

University of Asia Pacific Department of Civil Engineering Mid Term Examination Fall 2015

Course # : CE 363 Full Marks: 60						Course Title: Engineering Hydrology Time: 1 hour				
A	nswer all Ques	tions								
1.	Define :								(1.5 *4= 6)	
	i) Relati ii) Perma	ve humidi nent Wilti	ty ing Point		iii) iv)	Glaze Evapotran	spiration			
2.	Write short no i. Pan coeffic ii. Conditions	tes on: ient to form p	recipitatior	iii. Inter	nsity- D	uration- Free	quency rela	tionship	(3*3=9)	
3. 4.	Describe the p What are the f	rocedure of actors that	of estimatin affect eva	ng missing poration?	g precip	itation data.			(5) (6)	
5.	A catchment h are as followed	as 6 raing 1:	gauge statio	ons. In 20)14 the	annual rainf	all recorded	d (in cm) by	the gauges	
÷	Station	A	В	С	D	E	F			
	Rainfall	91.6	167.9	175.3	86.3	124.2	172.7			
	For a 10% error the catchment.	or in the es	stimation o	f the mea	n rainfa	ll, calculate	the optimu	m number o	f stations in (5)	
	 Estimate the i. Slope of t mm/°C Mean tem Relative h Relative h Wind velow Saturated vi. Net radiation 	e daily pot he saturat perature = numidity = poty at 2 n vapour pr ion = 5 m	ential evap ion vapor p = 22°C = 80% m height == essure e _w = m of water	ootranspir oressure v 86 km/da = 5.34 mn per day	ation for s. tempo ny n of Hg	r the followi erature at the	ng data by e mean air t	Penman's fo emperature	ormula: (10) = 1.4	
	vii. Psychrom	etric cons	tant = 0.49	mm of H	ſg∕°C					
7.	Calculate air of The surface pr	lensity, va ressure is	por pressu 101.3 kPa,	re, specif the surfac	ic humic ce air te	dity at 2km l mperature is	high above 30°C and	1 m ² of grou the lapse rat	und surface. e is	
	0.5 C/KIII.									
8.	For a drainage	basin of	310 km², i	sohyetals	drawn	for a storm g	gave the fol	lowing data	: (10)	
Isc	hyetals interval (cm)	70-60) 60	-50	50-40	40-3	0 30-20)		
Int	er isohyetal are (km ²)	a 75	4	16	79	58	. 52	¢.		

Estimate the average depth of precipitation over the catchment.

.

University of Asia Pacific Department of Civil Engineering Mid-Semester Examination Fall-2015 Program: B. Sc Engineering 3rd Year 2nd Semester

Course Title: Principles of Managemen	t. Course No. 1	IMG 301	Credit: 2.00
Time: 1.00 Hour.	0	Ω.	Full Marks: 20
Q#1: Best Matching:		*	4 @ 1
1= 4=	= Strategic Intent; = Innovation;	2= Efficiency; 5= None.	3=Liaison role;
: Compromise between conflic : The ability and power to deve : Picking a course of action tha : "Encircle Bata".	ting interest groups. elop new ideas. at is satisfactory/good	enough under the circ	umstances.
Q#2: Pick the right one:			4 @ 1
"No competition" The V.C. was doing a press confer No ideas are ever criticized You are receiving an email from a	ence. friend.	: blue ocean/ red oce : liaison/ spokesperso : brainstorming/ Delp : liaison/ disseminator	ean/ none. n/ none. hi technique/ none ·/ none.
	tear here please-		

Briefly explain any Three question from below:

Q#3: Compare 'Efficiency' with 'Effectiveness'.

Q#4: Describe the Planning function and the Staffing function of management.

Q#5: Explain the Codetermination.. How it differs from Japanese Management System

Q#6: What do you mean by 'Satisficing' decision.

Q#7: Describe the Delphi technique process. How it differs from Brainstorming process.

Marks: 3@4