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Abstract  
 
The roles of dilatancy and fabric on the behavior of granular materials are both numerically and experimentally explored for the 
study of material instability and failure. This investigation has two basic ingredients: namely a stress dilatancy model with
embedded microstructural information through a fabric tensor, and an experimental rendition of force transmission and structure 
in an assembly of 2D photoelastic disks. In order to highlight material instability, model simulations of sand behavior are 
carried out in triaxial stress conditions along proportional strain paths with varying degrees of controlled dilation (or 
compaction) including isochoric deformations as a particular case. It is shown that a dense sand can succumb to instability or 
liquefaction in other than isochoric (undrained) conditions. Photoelastic observations reveal that this instability is highly 
dependent on microscopic features such as particle geometry, packing, and diameter among others. 
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Introduction 
 
The behavior of granular materials such as sands is controlled 
by their dilatancy and the mode by which the applied stresses 
are carried by so-called force chains. It is because of the 
discrete nature of the system that dilatancy manifests itself 
through geometrical grain rearrangements with the fabric 
acting as a constraint against applied stresses. Therefore, in 
the pursuit of fundamentals, it is pertinent to study fabric in 
sand and systematically incorporate it in any constitutive 
modeling endeavor for the analysis of failure, material 
instability as well as strain localization. 
 
Stress dilatancy theories have been traditionally developed 
for soils based on macroscopic analysis through energy 
principles (e.g., Rowe 1962). However, incorporating micro- 
or meso-scale phenomenon in a continuum model is a 
challenging task since any theory developed is difficult to 
completely verify, given that experimental data on fabric is 
scarce (Oda and Iwashita 1999). For instance, micro/meso-
macro relationships give way to a mathematical description 
of fabric and its relationship to stresses and deformations, but 
its evolution with deformation history remains elusive 
without experimental data. Micro-mechanical pursuits of 
stress dilatancy description exist in the literature; to name a 
few, see Matsuoka & Takeda (1980), Nemat-Nasser (2000), 
Wan & Guo (2001). 
 
In this study, we use the model developed by Wan & Guo 
(2001) with an embedded fabric-dependent dilatancy rule in 
order to illustrate the central roles of dilatancy and fabric on 
material stability along imposed strain paths, rather than 
stress paths. By controlling volume changes in a particular 
manner during deformation history, we demonstrate that a 
dense sand can succumb to instability or liquefaction in other 
than isochoric (undrained) conditions. On the other hand, 
force chains revealed during the biaxial loading of an 
assembly of photoelastic disks help to understand the failure 
mechanism leading to unstable behavior and role of fabric. 
 

This study touches upon the understanding of flow in 
granular materials, soil-structure interaction problems under 
extreme loading conditions, as well as slope stability 
problems with pre-shear small perturbations. 

 
Fabric-Embedded Dilatancy Model 
 
We begin with a brief recapitulation of the model essentials 
for describing fabric dependencies through a micro-
mechanical analysis that involves equating the total energy 
dissipation of a grain assembly endowed with some fabric to 
the total work input, Guo (2000). The stress-dilatancy 
equation that emerges from such an analysis can be expressed 
in axi-symmetric stress and strain conditions after some 
simplifications as follows:  
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Where,    = plastic volumetric strain rate,   = plastic shear 
strain rate, m = mobilized friction angle, and f = 
characteristic friction angle. It is interesting to note that Eq. 
(1) takes the same form as the standard Rowe’s dilatancy 
equation, except for a characteristic friction herein introduced 
that establishes the link to fabric, i.e. 
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Where, e and ecr are current and critical void ratios 
respectively, cv  is the friction angle at critical state, while X, 
a and  are constants. Fabric information is transmitted 
through fabric components F11 and F33 which are projections 
of the second order fabric tensor Fij (Wan & Guo 2001) along 
principal stress directions 1 and 3 respectively, and the 
transformed plastic shear strain term * which factors 
conventional strain with fabric. In general, fabric and stress 
tensors are not coaxial. 
 
It is evident from Eq. (1) that both positive and negative rates 
of dilation can be obtained depending on the relative 
magnitudes of m and f. In the limit, fabric conditions can be 
such that a positive rate of dilation is possible even though 
the current void ratio is looser of critical, i.e. e>ecr. 

 
Setting aside all details of constitutive modeling derivations, 
the stress dilatancy described in Eq. (1) has been used as a 
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flow rule in a double hardening elasto-plastic model (Wan & 
Guo 2001). Apart from describing plastic hardening via 
mobilized friction angle, a fabric evolution law needs to be 
established as follows: 

p

s
F ij

ijijij  ;                                                         (3) 

 
which intimates that fabric component changes (Fij) are 
purely deviatoric and coaxial with the rate of change of 
deviatoric stress ratio tensor ij = sij /p ; with sij = deviatoric 
stress and p = mean stress. 
 
Fig. 1 shows a family of energy dissipation curves plotted as 
applied stress ratio (1/3) against dilatancy rates                         
f                     calculated by the model for the case of loose (e0 
= 0.65) Ottawa sand with fixed initial anisotropy (fabric ratio 
 =F1/F3 =1.33; F1 and F3 being major and minor principal 
fabrics respectively) but with varying bedding planes in 
which grain contact normals are dominant. It is found that 
with increasing bedding angle, the initial dilation rate 
decreases, i.e., the sample undergoes more volumetric 
compaction initially, while the maximum dilatancy and the 
corresponding mobilized stress ratio (i.e., the maximum one) 
decrease. Basically, the higher the bedding angle, the higher 
the threshold stress ratio at which the compaction-dilation 
transition occurs. 
 
Imposed Proportional Strain Paths 
 
The response of sand along proportional strain paths with 
constant deformation rate  = dv /d is examined. As such, 
the standard undrained test corresponds to  = 0, while 
constant compaction and dilation rate tests refer to positive 
and negative ’s respectively. Strain path controlled 
experimental studies are scarce in the literature, with the 
exception of the work reported by Chu et al. (1992) that 
probe sand behavior along proportional strain paths with 
reference to strain softening and localization - viz. material 
stability. From a practical viewpoint, Vaid and Sivathayalan 
(2000) have also investigated strain path tests by controlling 
the drainage conditions in the test specimen since water 
flowing into or out of it would cause either dilation or 
contraction. The rationale of such tests is that under real field 
situations, soils deform in a partially drained condition. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1  Stress dilatancy curves as a function of initial fabric 

Model Simulations  
 
With this brief overview, we now turn to model simulations 
of Fig. 2 pertaining to the behavior of dense (e0 = 0.60) 
Ottawa sand along a variety of proportional strain paths  
(3.0 to +1.0) at an initial confining pressure of 200 kPa. In 
this set of calculations, the initial fabric was assumed to be 
isotropic, but evolved subsequently during deformation 
history. It is found that the sand displays stable behavior for 
positive 's, including the undrained case. By stable behavior, 
we mean that the second order work d2W=d.d  is positive 
(Hill 1959). On the other hand, for largely negative 's 
referring to forced dilation on the specimen, the effective 
stress path displays unstable response just like for a loose 
sand under undrained conditions. Thus, the material strength 
associated with any proportional strain path is not bounded by 
the undrained and drained conditions as shown in Fig. 2. It 
would be then erroneous to derive material strength solely 
based on undrained conditions. 
 
Fig. 2 shows a peculiar stress path for  = 0.15 which 
displays an initial hardening (stable) phase ABC, terminating 
into an unstable one with a snap-back at C. Fig. 3 compares 
the stress path with the one obtained for the same  value, but 
with an initial fabric ratio F1/F3 of 1.33. The higher 
deviatoric stress q sustained by the soil for the latter case is 
understandable, given that the initial anisotropy as quantified 
by  corresponded to a bias of contact normals in the axial 
direction. In view of understanding the nature of the stress 
path ABC, the variations in effective stress components are 
plotted in Fig. 4. Along AB, the effective axial stress ('1) 
increases, while the radial one ('3) decreases giving a net 
decline in mean effective stress p'. 
 
More insight can be gained by plotting the evolution of 
principal fabric components F1 and F3 as seen in Fig. 5 (for 
‘Fabric’ see Satake 1982, Oda 1982, Kantani 1984). 
Basically, the changes in effective stress components follow 
those of principal fabric F1 and F3. We thus suppose that at 
the micro/meso-scale, particle redistribution is being made 
with contact normals realigning themselves along the axial 
direction at the detriment of contact loss in the radial 
direction. Based on Figs. 4 and 5, the post snap back at C 
may be attributed to the loss in confinement and axial support 
due to fabric reorganization. But the described mechanisms 
need to be verified, which lead us to the next section. 
 
Observations on Photoelastic Grain Assembly  
 
We study the issue of fabric by loading biaxially a system of 
photoelastic pentagonal grains, and thereafter observing the 
particle force chains developed. The study of fabric using 
photoelastic materials is not new (e.g., Drescher & de-
Josselin de Jong 1972, Oda et al. 1980, Geng et al. 2003). 
Axial and lateral displacement rates ) and ( 21 DD  are 

applied in a ratio defined as *
( ) /( )1 2 1 2D D D D       .  

 
The resulting forces are denoted by f1 and f2 respectively. Fig. 
6 shows the force response paths for various  values, which 
reveal to be similar to the stress paths previously discussed in 
triaxial stress conditions (Fig. 2). Here Fd and Fm are the 
deviatoric and mean forces respectively as a result of Fd = (f1 

 f2)/2 and Fm = (f1 + f2)/2. 
 
The evolution of axial and lateral forces f1 and f2 is shown in 
Fig. 7 for the path  = 0.67 in particular. We observe a 
quite similar trend as the one described in Fig. 4 for model 
simulations, in which forces/stresses drop (A-B) and then rise 
(B-C).  
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Fig. 2  Effective stress paths for different  values 
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Fig. 3  Effect of fabric on the stress path for 0.15 
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Fig. 4  Evolution of effective stresses: 0.15 
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Fig. 5  Evolution of fabric along stress path: 0.15 
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Fig. 6  Force response of photoelastic disk assembly 
 
 
 

 
 

     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

Fig. 7 Force component evolution along path ABC
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Fig. 8 reveals the contact force chain and associated structure 
at key points A, B and C on the force response curve plotted 
in Fig. 6. The fringe patterns indeed indicate the formation of 
contact force chains as we move along from A to B leading to 
a reduction in both axial and lateral loads. Between B and C, 
additional force chains develop in the axial direction so that 
the axial load (f1) picks up. At the same time, in order to 
sustain the deformation as prescribed by , the lateral load 
has to decrease so as to allow the required dilation. The force 
chains ultimately buckle at point C corresponding to the snap 
back. It is also interesting to note that a two-phase structure 
emerges with the force chains seen embedded into a matrix of 
apparently less loaded particles. The mechanism of contact 
force chain build up and buckling concur with the model 
simulations presented in the previous section. This suggests 
that it is possible to describe micro/meso phenomena through 
a continuum level model with an embedded fabric tensor. 
 
Effect of Micro-Features on Macro Response  
 
Inspired from the observations in the previous section, the 
experimental modeling was further extended to study the 
effect of subtle changes in micro features of fabric produced 
by varying the shape, diameter and packing of the 
photoelastic grains. Firstly, the pentagonal disks (grains) were 
changed into circular disks of 7 mm in diameter, the contour 
of which circumscribed the pentagonal section. It is expected 
that circular disks are less susceptible than the pentagonal 
disks to developing fabric due to the smoothness of the disk 
contour. Secondly, smaller circular disks of 5 mm in diameter 
were used to further investigate the size issue. For ease of 
comparison, the deformation rate  was kept the same and 
equal to 0.67 for all the cases studied. Indeed, this provides 
a unique opportunity to critically investigate microscopic 
force transmission under different fabrics but the same 
deformation history. Furthermore, the issue of inherent 
packing anisotropy was studied for both 5 and 7 mm circular 
disks, where again the same deformation ratio  = 0.67 was 
maintained with deformation rates a n d  1 2D D  being 

interchanged between the two principal directions. If there 
were no packing anisotropy present in the samples, their 
response should be identical to each other. But a marked 
change in behavioral response was observed, which will be 
reported here. 
 
Effect of Grain Shape 
 
7mm circular disks: In contrast to the pentagonal disk case 
discussed in the previous sections, both forces F1 and F2 

steadily decrease throughout deformation history, see Fig. 9a. 
Fig. 9b. shows the force response path with strategic points A, 
B, C and D marked down. It is interesting to note that there is 
no snap back phenomenon occurring as was the case in the 
pentagonal disk assembly. In order to get more insight in the 
development of failure mechanism during loading history, the 
disk packing corresponding to the different stages of the force 
response path are subsequently given in Figs. 9c, d, e, f. At 
point B, some disks in the central part of the specimen are 
highly stressed in comparison with other ones at the two 
lateral sides. Then as the peak point (point C) on the force 
response path is reached, a general weakening of the central 
core occurs, until finally at point D and beyond, the fringes 
correlating to intensity of contact forces disappear for most of 
the disks in a diffuse manner. The latter corresponds to a 
progressive softening of the sample that exacerbates in time 
to eventually lead to its collapse. It is clear from the images 
that the sample never hardens in this case, which is in 
contrast with the pentagonal disk case where the sample 
showed remarkable hardening until it could no longer hold 
loads anymore and succumbed to collapse as force chains 
buckled. In general, it can be concluded that the lack of 
interlocking between grains weakens the sample significantly. 
 
Effect of Grain Size 

 
5mm circular disks: For same  = 0.67 values, images at 
different points of stress path of 5 mm disk sample is shown 
in Fig. 10. It is interesting to note that change in diameter 
significantly changes the response in spite of same packing 
and void ratio. In this case (5mm disk) quite a bit of sample 
hardening observed compared to 7 mm disk (Fig. 9). In Fig 
10a shows mean stress (Fm) after initial fall remain same for 
large amount of shearing  (from point B to D). In case of 7 
mm sample no such response was observed (see Fig. 9a), 
where mean stress fall all the way down. The change in 
response for 5 mm disk can be explained from photoelastic 
images. In images of point B (Fig. 10d) a visible core of 
highly stressed region is seems to develop in the middle to 
support increasing stress along vertical direction. With further 
shearing at point C sample starts to soften where disks along 
diagonal direction starts to slip with each other and thereby 
the strong core no longer exists. Once this is initiated, disks 
slip forming a wedge (as shown in image of point D, Fig. 10f) 
and sample is unstable afterward. 
 

 

 

Fig. 8  Force network developed at key points A,B and C 
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Fig. 9  Force components, force response path and network at key points for 7 mm circular disks 
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Effect of Anisotropy in Packing 
 
Unlike in pentagonal disks, the packing of circular disks into 
a dense configuration leads to an incomplete filling, leaving 
intermittent gaps at the two lateral boundaries as opposed to 
the top and bottom boundaries of the specimen, see Figs. 9 
and 10. This endows the specimen with some inherent 
anisotropy that has to be investigated. Consequently, 
deformation rates D1 and D2 as applied earlier along major 
(f1) and minor (f2) principal directions (vertical and horizontal 
directions) would result into a different response if these 
deformation rates were switched between two principal 
directions. More precisely, this is similar to rotating the 
principal directions by 90o. Unlike in the previous cases, the 
switched deformation rates D1 and D2 were applied along 
horizontal and vertical directions respectively for the same 
imposed dilation rate =  0.67. Notations of forces are kept 
same such that D2 and D1 are acting along f1 and f2 directions 
respectively yielding a negative value of Fd in this case as f2 > 
f1. Images are shown at a 900 rotated (clockwise) position so 
that the vertical direction is parallel to deformation rate D1. 
This facilitates the comparison of the switched condition with 
the previous case. 
 
Fig. 11 shows the images of disk packing at several points for 
5 mm circular disks when the rate of strains were switched to 
observe the effect of anisotropy. This reveals a whole 
different picture indicating a different failure and load 
transmission mechanism. Unlike in Fig. 10a, the force 
component f2 increases (from point B to C) after an initial 
drop as shown in Fig. 11a. This results into the formation of a 
small hook in the force response path in Fig. 11b. The force 
transmission mechanism at point B is shown in Fig. 11d. In 
this case once shearing was initiated, the disks unlock to form 
individual columns along vertical directions due to the grain 

packing structure. Upon further shearing, these columns of 
disks strengthen so that the force f2 tends to increase (acting 
along vertical direction of the images), see Fig. 11a. 
However, as these columns are slender they cannot sustain 
higher forces without lateral support. Hence, they start to 
buckle at some stage of shearing and subsequently lead to 
failure of the sample. This buckling forms a shear band like 
structure as shown in Fig. 11e corresponding to point C. 
Again in this case the sample fails at lower axial 
displacement compared to previous case (see D2 at point C in 
Fig. 11a and D1 at point D in Fig. 10a). This indicates that the 
sample is weaker for this switched condition of straining for 5 
mm disks. 
 
Similarly, a sample consisting of 7 mm circular disks was 
also tested for reversed force directions. Images 
corresponding to several points on the force response path are 
shown in Fig. 12. From the images (e.g., Fig. 12e) it is clear 
that the failure mechanism is very similar to that obtained for 
5 mm disks. For example, upon shearing individual columns 
are developed (see image corresponding to point B, Fig. 12d). 
These columns strengthen further upon shearing, showing 
some hardening. Subsequently, the columns start to buckle as 
failure of the specimen is initiated (Fig. 12f). Compared to 
the 5 mm disk specimen, the one with 7 mm disks failed 
following the same pattern, but at higher axial deformations. 
That is, unlike the 5 mm disks, this reverse loading is more 
stable than the previous condition in Fig. 9. This is due to the 
larger diameter of the sample. The interesting point is, as 
grain size is larger, the columns formed are less slender than 
the one formed by 5 mm disks. Therefore, columns formed of 
7 mm circular disks can take more stress without lateral 
support. Hence for a same void ratio and all around pressure, 
the grain diameter and packing can significantly influence the 
response of a granular media under dilation. 
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Conclusion 
 
This study suggests that flow type of failures in soils may not 
only be restricted to the celebrated saturated loose sand case 
in undrained conditions. A dense assembly of granular soil 
will display unstable behavior or subsequently liquefy if 
loaded along strain paths that involve a particular dilation 
rate. This dilation rate is also highly dependent on the soil’s 
microstructure. We have demonstrated both numerically and 
experimentally that fabric, through its kinematical features, 
plays a dominant role in controlling the macroscopic response 
of the medium. A fabric dependent stress-dilatancy equation 
used in the study demonstrates that a continuum elastoplastic 
model can indeed capture behavioral subtleties of sand 
response along both stress and strain path histories. Model 
predictions are confirmed with experimental results obtained 
in the biaxial testing of photoelastic grains. In such a set-up, 
forces, displacements, as well as contact force networks can 
be measured experimentally. When deforming granular 
materials along imposed dilatancy paths, it is shown that the 
mechanism of failure corresponds to one in which strong       
force columns of interconnected particles are initially formed 
during the hardening phase. Failure then ensues due to the 
force columns buckling under increased shearing and 
decreased lateral confinement that are both required to 
maintain the imposed dilatancy rate. In conclusion, this paper 
demonstrates experimentally the important role of 
microstructure in the behavior of granular materials and the 
possibility of capturing microstructural features using a fabric 
embedded stress-dilatancy equation. Photoelastic nature of 
the model granules evolve as an effective tool to critically 
investigate the microscopic force transmission in a granular 
mass under complex straining combinations. Changes in 
fringe pattern with applied strain provide a qualitative 
measure of fabric evolution at that state of stress. A 
quantitative measure of the stress field at the point of contact 
between two neighboring granules from image analysis will 
give more insight, which is the subject matter of future 

research. 
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